THERMAL STABILITY AND GLASS TRANSITION BEHAVIOR OF PANI/ α -Al₂O₃ COMPOSITES

Y.-N. Qi^{1,2}, F. Xu^{1*}, L.-X. Sun¹, J.-L. Zeng^{1,2} and Y.-Y. Liu^{1,2}

¹Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road, Dalian 116023, P.R. China ²Education School of Chinese Academy of Sciences Chinese Academy of Sciences 10 Ve Over Bood Deiling 100020 D

²Education School of Chinese Academy of Sciences, Chinese Academy of Sciences, 19 Yu Quan Road, Beijing 100039, P.R. China

Polyaniline/ α -Al₂O₃ (PANI/ α -Al₂O₃) composites were synthesized by in situ polymerization through ammonium persulfate ((NH₄)₂S₂O₈, APS) oxidized aniline using HCl as dopant. XRD and FTIR were used to characterize the PANI/ α -Al₂O₃ composites. The thermal stabilities and glass transition temperature (T_g) of PANI/ α -Al₂O₃ composites were tested using thermogravimetric (TG) method and modulated differential scanning calorimetry (MDSC) technique. The results of TG showed that the thermal stability of PANI/ α -Al₂O₃ composite increased and then decreased with the increase in α -Al₂O₃ content. The derivative thermogravimetry (DTG) curves showed one step degradation of PANI when the α -Al₂O₃ content was lower than 52.5 mass%, and exhibited two steps degradation when the α -Al₂O₃ content was higher than 63.6 mass%. The MDSC curves showed that the surface of α -Al₂O₃ composites increased and then decreased with the interaction between PANI chains and the surface of α -Al₂O₃.

Keywords: glass transition, modulated differential scanning calorimetry, $PANI/\alpha$ -Al₂O₃ composite, thermal stability

Introduction

In recent years, conducting PANI has attracted much attention for its novel properties of easy preparation and environmental stability, as well as its potential applications in electronics [1, 2] and sensors [3, 4]. When PANI compounded with inorganic nanoparticles, the PANI composites usually exhibited more special properties than pure PANI [5–8]. For example, PANI/Fe₃O₄ nanocomposite was more promising electromagnetic wave absorbers than pure PANI and pure Fe₃O₄ particles [9]. PANI with addition of MnO₂ and ZrO₂ nanoparticles could change to be water-dispersible [10, 11]. Furthermore, PANI/TiO₂ nanocomposites [12, 13] with high piezoresistivity and PANI/MWNT composites with high shear stress [14] have also been found.

These special properties of PANI composites came from the combination of PANI chains and inorganic nanoparticles. Therefore inorganic nanoparticles with special properties [15] could improve some poor properties like thermal stability of PANI. Some researchers have paid attention to this aspect. Yoshimoto [16] and Wang [17] studied the effect of montmorillonite and Co_3O_4 nanoparticles on the thermal properties of PANI. And found that the thermal stability of PANI both increased with the addition of up two inorganic nanoparticles. Kazimso [18] studied the T_g of PANI/Te nanocomposites and found that the Te nanoparticles could decrease the T_g of PANI. And our previous work showed that the γ -Al₂O₃ nanoparticles could improve the thermal stability and increase the glass transition temperature of PANI [19]. So it would be interesting to study the effect of more thermal stable nanoparticles– α -Al₂O₃ on the thermal stability and T_g of PANI. In our present work, the PANI/ α -Al₂O₃ composite was synthesized by in situ polymerization, the XRD patterns and FTIR spectra were studied to confirm constitutes of the composites. Thermal analytical experiments were performed to confirm the content of the PANI in the composites and the thermal properties (thermal stability and T_g) of PANI/ α -Al₂O₃ composites

Experimental

Materials

Aniline obtained from Shenyang Federation Reagent Factory was purified twice by vacuum distillation and then was stored in refrigerator for using. Ammonium persulfate ((NH₄)₂S₂O₈, APS) used as an oxidant was purchased from Tianjin Jizhun Chemical reagent Co. Ltd., hydrochloric acid (HCl) was provided by Harbin Chemical Reagent Co. and α -Al₂O₃ nanoparticles with particle size of approximately 80 nm was obtained from Nanjing Haitai Technology Nano-Co. Ltd. All chemical reagents were analytical grade.

^{*} Author for correspondence: fenxu@dicp.ac.cn

Preparation of PANI/α-Al₂O₃ composites

The PANI/ α -Al₂O₃ composites were synthesized by in situ polymerization, which was similar to our previous work [19]. Firstly, a known volume of aniline was injected into 10 mL 2 M HCl aqueous solution, stirred for 0.5 h. And then α -Al₂O₃ nanoparticles were added into the clear solution with stirring and ultrasonic action to reduce the aggregation of α -Al₂O₃ nanoparticles. After 5 h, a known volume of APS solution was dropped into the above solution with stirring. The reaction mixture was continuously stirred at room temperature for 12 h. The productions were then washed thoroughly with methanol and deionized water repeatedly till the filtrate was colorless. The product was dried in vacuum at 80°C for 24 h. For each experiment, the molar ratios of aniline to HCl and to APS were retained at 1:0.5 and 1:1, respectively.

Methods

Characterization

The XRD patterns of α -Al₂O₃, pure PANI and PANI/ α -Al₂O₃ composites were recorded on a PANalytical X'Pert MPD PRO diffractometer fitted with CuK_{α} radiation (λ =1.5404 nm) at 40 kV and 40 mA, with a scanning speed of 10° min⁻¹. Fourier transform infra-red (FTIR) absorption spectra of pure PANI, α -Al₂O₃ nanoparticles and PANI/ α -Al₂O₃ composites were performed on a Bruck Equinox 55 spectrophotometer in the wavelength range of 4000–400 cm⁻¹. The specimen substrate was a KBr disc.

Thermal properties

The thermogravimetry of pure PANI and PANI/ α -Al₂O₃ composites were performed using a thermogravimetric analyzer DT-20B instrument. TG curves were obtained under air atmosphere at a heating rate of 10°C min⁻¹ from room temperature to 700°C. The gas flow rate was 30 mL min⁻¹. The T_g of pure PANI and PANI/ α -Al₂O₃ composites were measured by MDSC on a Q1000 from TA Instruments, in a temperature range from 50 to 270°C, at a heating rate of 3°C min⁻¹.

Results and discussion

Structure characterization of $PANI/\alpha$ - Al_2O_3 composites

Figure 1 shows the XRD patterns of pure PANI, PANI/ α -Al₂O₃ composite [55.5/44.5 (*w/w*)] and α -Al₂O₃ nanoparticles. It can be seen that the pure PANI exhibited two broad peaks at 2 θ angles around 20 and 26°, which indicated that the pure PANI had

Fig. 1 XRD patterns of a – pure PANI, b – PANI/ α -Al₂O₃ composite [55.5/44.5 (*w*/*w*)] and c – α -Al₂O₃ nanoparticles

Fig. 2 FTIR spectra of a – pure PANI, b – PANI/ α -Al₂O₃ composite [67.4/32.6 (*w*/*w*)] and c – α -Al₂O₃ nanoparticles

crystallinity to a certain extent [20]. α -Al₂O₃ nanoparticles showed ten peaks at 2 θ angles from 20 to 70°. The XRD pattern of PANI/ α -Al₂O₃ composite [55.5/44.5 (*w/w*)] integrated the characters of PANI and α -Al₂O₃ nanoparticles. It means that the α -Al₂O₃ nanoparticles existed in the composite. While, compared with pure PANI and α -Al₂O₃ nanoparticles, the peaks intensity of the composite decreased, which showed that the α -Al₂O₃ nanoparticles addition decreased the crystallinity extent of PANI.

FTIR spectra of pure PANI, PANI/ α -Al₂O₃ composite [67.4/32.6 (*w*/*w*)] and α -Al₂O₃ nanoparticles are shown in Fig. 2. It can be seen that the FTIR spectra of α -Al₂O₃ nanoparticles exhibited some small peaks in the range of 400 to 2000 cm⁻¹. And the peaks at 1572, 1492, 1295, 1130 and 804 cm⁻¹ in the spectra of PANI/ α -Al₂O₃ composite [67.4/32.6 (*w*/*w*)] were in accordance with the FTIR spectra of pure PANI, which was the same to the similar study [21]. It means

that the α -Al₂O₃ nanoparticles had not much influence on the structure of PANI/ α -Al₂O₃ composite [67.4/32.6 (*w*/*w*)].

Thermal stability of PANI/ α -Al₂O₃ composites

It is well known that TG was an important measurement to estimate the component content in the composite [22]. Figure 3 shows the TG and DTG (inset) curves of pure PANI, PANI/a-Al₂O₃ composite [67.4/32.6 (w/w)] and α -Al₂O₃ nanoparticles. From Fig. 3, it can be seen that in the temperature range of 20 to 700°C, the mass loss of α -Al₂O₃ nanoparticles was ca. 8.5%, which was due to the volatilization of impurity [23]. In the same temperature range, the mass loss of pure PANI was ca. 97.3% and the total mass loss of $PANI/\alpha - Al_2O_3$ composite [67.4/32.6 (w/w)] was ca. 75.9%. So the PANI mass content in the composite was (75.9-8.5)%=67.4%, the α -Al₂O₃ nanoparticles mass content was (100-67.4)% = 32.6%.

TG curves of pure PANI and PANI/ α -Al₂O₃ composite [67.4/32.6 (*w*/*w*)] showed two steps mass loss. For pure PANI, the first step was from 45 to 130°C, which was attributed to the volatilization of H₂O and HC1. The second step occurred from 250 to 650°C was due to the degradation of PANI chains. The temperature ranges of two steps mass loss of

PANI/ α -Al₂O₃ composite [67.4/32.6 (*w/w*)] were similar to the pure PANI. But the initial degradation temperature (T_i) of PANI/ α -Al₂O₃ composite [67.4/32.6 (*w/w*)] was (298.7°C) a little higher than that of pure PANI (297.4°C). It means that the PANI/ α -Al₂O₃ composite [67.4/32.6 (*w/w*)] was more thermal stable than pure PANI. The peak temperature of composite degradation (T_p) is another criterion for thermal stability. The peak at 414.4°C in DTG curves (inset in Fig. 3) of PANI/ α -Al₂O₃ composite [67.4/32.6 (*w/w*)] was corresponding to the degradation of PANI chains, which was higher than that of pure PANI (405.0°C). It was also exhibited that the thermal stability of the PANI/ α -Al₂O₃ composite [67.4/32.6 (*w/w*)] was higher than pure PANI.

Figures 4 and 5 show the TG and DTG curves of PANI/ α -Al₂O₃ composites with different contents. The T_i of TG and T_p of DTG data for the PANI/ α -Al₂O₃ composites are listed in Table 1. From Fig. 4 and Table 1, it can be seen that with the increase in content of α -Al₂O₃, the T_i of PANI/ α -Al₂O₃ composites increased when the α -Al₂O₃ content was lower than 63.6 mass%. It was because that the interaction between PANI chains and the surface of α -Al₂O₃ nanoparticles increasing, which increased the thermal stability of PANI [24]. But when the α -Al₂O₃ content was higher than 63.6 mass%, the α -Al₂O₃ aggregation occurred and the free PANI in the

Fig. 4 TG curves of PANI/α-Al₂O₃ composites

Table 1 T_i of TG, T_p of DTG, and T_g of MDSC for the PANI/ α -Al₂O₃ composites

Sample	PANI/mass%	α -Al ₂ O ₃ /mass%	$T_{\rm i}/^{\rm o}{ m C}$	$T_{\rm p}/^{\circ}{\rm C}$	$T_{ m g}^{/\circ}{ m C}$	
0	100	0	297.4	405.0	163.19	
1	67.4	32.6	298.7	414.4	167.17	
2	55.5	44.5	337.3	463.8	171.95	
3	47.5	52.5	341.6	478.5	173.10	
4	36.4	63.6	363.9	372.9, 512.4	133.86	
5	24.1	75.9	313.3	355.8, 434.3	128.06	

Fig. 5 DTG curves of PANI/a-Al₂O₃ composites

composite increased which decreased the T_i of the PANI/ α -Al₂O₃ composite. The T_p of PANI/ α -Al₂O₃ composites increased with the α -Al₂O₃ content increasing when the α -Al₂O₃ content was lower than 52.5 mass%. And the interesting phenomenon was that when the α -Al₂O₃ content was higher than 63.6 mass%, the DTG curves showed two peaks in the temperature range of 300 to 600°C. The two T_p represented the degradation of PANI with shorter and longer chains, respectively. Combined with the data of T_i , it can be seen that too much addition of α -Al₂O₃ nanoparticles (higher than 63.6 mass%) would decrease the thermal stability of PANI.

Glass transition behavior of $PANI/\alpha$ - Al_2O_3 composites

 $T_{\rm g}$ is an important property in determining the suitability of a polymer for an engineering application. Figure 6 shows the MDSC curves of PANI and PANI/ α -Al₂O₃ composite. From the MDSC curves, the $T_{\rm g}$ of PANI/ α -Al₂O₃ composite can be estimated through computer software. The $T_{\rm g}$ data of

Fig. 6 MDSC curves of pure PANI and PANI/α-Al₂O₃ (*w/w*) composites: a – 67.4/32.6, b – 55.5/44.5, c – 47.5/52.5, d – 36.4/63.6 and e – 24.1/75.9

PANI/ α -Al₂O₃ composites are also listed in Table 1. With α -Al₂O₃ content increasing in the composite, T_g increased firstly and then decreased. This trend was similar to that of PANI/ γ -Al₂O₃ composites in our previous work [19, 25], but was opposite to [26] for the different nanoparticles surface. The increase in T_g was because of the decrease in mobility of PANI for the interaction between α -Al₂O₃ nanoparticles and PANI chains [25]. And the following decrease of T_g was due to the aggregation of α -Al₂O₃ nanoparticles, which led to the weak interaction between PANI chains and α -Al₂O₃ nanoparticles [19]. From Table 1 and Fig. 6, it can be even seen that the addition of α -Al₂O₃ nanoparticles could increase the T_g range of PANI and then increase application range of it.

Conclusions

The PANI/α-Al₂O₃ composites have been prepared and the thermal properties were examined. The addition of α -Al₂O₃ nanoparticles had a little influence on the structure of PANI. With the increase in content of α -Al₂O₃, T_i increased and then decreased for the change of interaction between PANI chains and the surface of α -Al₂O₃ nanoparticles. The peak for PANI degradation changed from one to two when the α -Al₂O₃ content was higher than 60 mass%. The T_g of the PANI/ α -Al₂O₃ composites increased firstly and then decreased with augment of α -Al₂O₃. It was due to the mobility change of PANI and the aggregation of α -Al₂O₃ nanoparticles, respectively. The suitable content of α-Al₂O₃ addition could increase the thermal stability and T_g of PANI. Comparing to our previous work [19], when the content of α -Al₂O₃ in the PANI composite was close to that of γ -Al₂O₃ nanoparticles, the $T_{\rm g}$ of the PANI/ α -Al₂O₃ composites were appreciably higher than that of $PANI/\gamma - Al_2O_3$ composites. It means that the effect of α -Al₂O₃ nanoparticles on the thermal properties of PANI is stronger than that of γ -Al₂O₃ nanoparticles.

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China for financial support to this work under Grant NSFC no. 20573112 and 20473091.

References

- C. S. Danielle, S. M. Michelle, A. H. Ivo and J. G. Z. Aldo, Chem. Mater., 15 (2003) 4658.
- 2 W. G. Li, Q. X. Jia and H. L. Wang, Polymer, 47 (2006) 23.

- 3 S. Virji, R. B. Kaner and B. H. Weiller, J. Phys. Chem. B, 110 (2006) 22266.
- 4 E. S. Forzani, H. Zhang, L. A. Nagahara, I. Amlani, R. Tsui and N. Tao, Nano Lett., 4 (2004) 1785.
- 5 Y. J. He, Appl. Surf. Sci., 249 (2005) 1.
- 6 Y. J. Yu, B. Che, Z. H. Si, L. Li, W. Chen and G. Xue, Synth. Met., 150 (2005) 271.
- 7 P. K. Khanna, M. V. Kulkarni, N. Singh, S. P. Lonkar, V. V. V. S. Subbarao and A. K. Viswanath, Mater. Chem. Phys., 95 (2006) 24.
- 8 T. K. Sarma and A. Chattopadhyay, Langmuir, 20 (2004) 4733.
- 9 Y. Z. Long, Z. J. Chen, J. L. Duvail, Z. M. Zhang and M. X. Wan, Physica B, 370 (2005) 121.
- 10 M. Biswas, R. S. Sinha and Y. P. Liu, Synth. Met., 105 (1999) 99.
- 11 S. S. Ray and M. Biswas, Synth. Met., 108 (2000) 231.
- 12 W. Feng, E. H. Sun, A. Fujii, H. C. Wu, K. Niihara and K. Yoshino, Bull. Chem. Soc. Jpn., 73 (2000) 2627.
- 13 L. J. Zhang, M. X. Wan and Y Wei, Synth. Met., 151 (2005) 1.
- 14 S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi and M. S. Jhon, Synth. Met., 152 (2005) 337.
- 15 S. Etienne, C. Becker, D. Ruch, B. Grignard, G. Cartigny, C. Detrembleur, C. Calberg and R. Jerome, J. Therm. Anal. Cal., 87 (2007) 101.
- 16 S. Yoshimoto, F. Ohashi and T. Kameyama, J. Polym. Sci. Part B: Polym. Phys., 43 (2005) 2705.

- 17 S. X. Wang, L. X. Sun, Z. C. Tan, F Xu and Y. S. Li, J. Therm. Anal. Cal., 89 (2007) 609.
- 18 S. Kazim, V. Ali, M. Zulfequar, M. M. Haq and M. Husain, Curr. Appl. Phys., 7 (2007) 68.
- 19 Y. N. Qi, F. Xu, H. J. Ma, L. X. Sun and J. Zhang, J. Therm. Anal. Cal., 91 (2008) 219.
- 20 L. L. Ding, X. W. Wang and R. V. Gregory, Synth. Met., 104 (1999) 73.
- 21 K. Mallick, M. J. Witcomb and M. S. Scurrell, Mater. Sci. Eng. B-Solid, 123 (2005) 181.
- 22 K. Pielichowski, Solid-State Ionics, 104 (1997) 123.
- 23 S. P. Armes, S. Gottesfeld, J. G. Beery, F. Garzon and S. F. Agnew, Polymer, 32 (1991) 2325.
- 24 K. Konstadinidis, B. Thakkar, A. Chakraborty, L. W. Potts, R. Tannenbaum, M. Tirrell and J. F. Evans, Langmuir, 8 (1992) 1307.
- 25 T. Hamieh and J. Schultz, J. Chromatogr. A, 969 (2002) 27.
- 26 B. J. Ash, R. W. Siegel and L. S. Schadler, J. Polym. Sci. Part B: Polym. Phys., 42 (2004) 4371.

Received: November 11, 2007 Accepted: May 30, 2008 OnlineFirst: September 20, 2008

DOI: 10.1007/s10973-007-8626-2